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SUMMARY

The frequency or dispersion relation for the discontinuous Galerkin mixed formulation of the 1-D
linearized shallow-water equations is analysed, using several basic DG mixed schemes. The disper-
sion properties are compared analytically and graphically with those of the mixed continuous Galerkin
formulation for piecewise-linear bases on co-located grids. Unlike the Galerkin case, the DG scheme
does not exhibit spurious stationary pressure modes. However, spurious propagating modes have been
identi�ed in all the present discontinuous Galerkin formulations. Numerical solutions of a test problem
to simulate fast gravity modes illustrate the theoretical results and con�rm the presence of spurious
propagating modes in the DG schemes. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Both mixed primitive variable and wave equation [1] forms of the shallow-water equations
are extensively used in environmental studies and other applications. Finite-element continuous
Galerkin (CG) techniques have gradually evolved to become the method of choice for this
problem class [1–10]. This is largely because of the need to treat irregular boundary geom-
etry in many applications. For example, both the coastal geometry and the bathymetry must
be modeled adequately and hence calculations on graded meshes of unstructured grids are
standard practice [11–17]. One of the issues associated with mixed formulations in general is
the possibility of spurious modes that may arise for certain choices of bases. This di�culty
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with mixed methods is not speci�c to the shallow-water problem alone but is well known
also in other contexts such as primitive variable viscous �ow where it has been exten-
sively investigated for the CG mixed method [18–22]. However, the situation in the mixed
shallow-water problem is di�erent and, as noted initially in Reference [23] and in subse-
quent studies [5, 8, 17, 24], an analysis of the dispersion relation for a given formulation will
explicitly ascertain the presence and determine the form of spurious modes as well as the
dissipative=dispersive nature of a given formulation.
Discontinuous Galerkin (DG) schemes have been the focus of a number of recent studies

in computational mechanics and computer codes are being developed for shallow-water appli-
cations using mixed formulation DG approaches [25–29]. A dispersion analysis of mixed DG
formulations has not apparently been made previously and the purpose of the present work
is to carry out such an analysis.
The examination of the spurious modes arising from mixed formulations has been focused

almost exclusively on the spurious pressure or surface-elevation modes since these were argued
to be the most troublesome [23]. These spurious modes are small-scale artifacts introduced by
the spatial discretization scheme which do not propagate but are trapped within the model grid,
and associated with zero frequency. If they are left undamped, they can cause an accumulation
of energy in the smallest-resolvable scale, leading to noisy solutions.
The origin of the surface-elevation spurious modes is found in the coupling between the two

operators that are responsible for rapidly propagating gravity waves in shallow-water models:
the pressure gradient and divergence of velocity terms. Because these operators are linear,
and the problems aforementioned occur in the context of linear formulations, solving linear
equations is su�cient for our purpose. Further, the Coriolis operator will not be considered
here because it is not concerned with the existence of surface-elevation spurious modes.
Finally, as a foundation for understanding the behaviour and suitability of the DG mixed
method in the context of shallow-water �ows, one-dimensional equations will be considered.
This permits constructive analysis to identify explicitly the asymptotic values of the discrete
frequencies of each DG scheme and also allows a clear presentation of the propagating modes
in numerical experiments.
Since the DG method introduces additional degrees of freedom for the same local choice of

polynomial basis, it is intuitively reasonable that the richer subspace may admit more modes.
In fact, we show that the DG scheme does not admit the usual stationary mode associated with
the G scheme but instead the co-located DG schemes explored here generate fast spurious
propagating modes. These modes propagating at three times the gravity mode speed, are high
frequency but may be substantially damped as seen in the numerical experiments. This is the
�rst study demonstrating this negative behaviour of mixed DG methods.
The paper is developed as follows: The one-dimensional shallow-water equations are con-

sidered in their simplest mixed velocity-elevation form for simplicity and convenience of
subsequent constructions. Some basic DG formulations of this system are developed us-
ing di�erent types of upwinding. We then consider the linear=linear co-located grid case,
construct the associated dispersion relations and investigate spurious mode dependencies.
The dispersion properties in each case are compared graphically with those of the standard
mixed CG formulation. This stability=dispersion analysis is followed by numerical tests to
demonstrate the presence and behaviour of fast propagating gravity modes. In the conclud-
ing remarks we summarize the results for these DG schemes and comment on other related
schemes.
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2. MODEL PROBLEM AND MODAL BEHAVIOUR

For an enclosed domain of length L, where 0¡x¡L, the one-dimensional, inviscid, linearized
form of the shallow-water equations may be expressed in Cartesian coordinates [30] as

ut + g�x =0 (1)

�t +Hux =0 (2)

where u is the velocity variable, � is the surface elevation with respect to the reference level
z=0, g is the gravitational acceleration and the mean depth H is assumed constant. Boundary
and initial data complete the speci�cation of the problem.
A linear stability analysis of (1) and (2) reveals that there is one basic kind of associated

motion, small-amplitude fast-moving gravitational oscillations. Indeed, if we examine the free
modes of (1) and (2) by perturbing about the basic state u= �=0, and substituting periodic
solutions of the form u= ũei(kx+!t) and �= �̃ei(kx+!t) into (1) and (2), where ũ and �̃ are
amplitudes, k is the wave number in the x-direction and ! is the angular frequency, we may
then obtain an equation for the frequency by noting that the determinant of the coe�cients
must be zero for a nontrivial solution. The resulting frequency equation is then

!2 − gHk2 = 0 (3)

The two solutions !=±√
gHk, correspond to the free-surface gravitational modes. The

gravity waves can propagate along the −x axis in both directions at a speed !=k=
√
gH ,

independently of the wave number k, and hence there is no dispersion of the waves.
We now illustrate the possible occurrence of stationary surface-elevation spurious modes in

the discretization of (1) and (2). Consider a uniform mesh of m intervals on (0; L) and let
h=L=m denote the meshlength parameter with nodes xj=( j − 1)h for j=1; 2; : : : ; m+ 1. By
semi-discretizing (1) and (2) in space and approximating the derivatives using centered �nite
di�erences at nodes j=1; 2; 3; : : :, we obtain

@uj
@t
+ g

�j+1 − �j−1
2h

=0 (4)

@�j

@t
+H

uj+1 − uj−1
2h

=0 (5)

where uj and �j, j=1; 2; 3; : : :, are located at the same nodal positions (co-located), as shown
in Figure 1.
By substituting uj= ũei(kxj+!t) and �j= �̃ei(kxj+!t) into (4) and (5), we obtain




! g
sin kh

h

H
sin kh

h
!



(
ũ
�̃

)
=

(
0
0

)
(6)
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Figure 1. The variables u and � are located at the same nodal positions.

and the resulting frequency equation is

!=
√

gH
sin kh

h
(7)

Now the phase speed is a function of k and !=k=0 for kh=�. Note in the CG case, the
same reasoning would also lead to the factor sin kh in the corresponding frequency equation.
Hence, the wave with wave length 2h is stationary and trapped within the mesh. It corresponds
to a physical eigenmode of the system which has its phase speed reduced to zero by the
numerical method and appears as a stationary spurious oscillation [23] with �j=(−1) j and
uj=0, j=1; 2; 3; : : : . The second solution where !=0 corresponds to k=0 so that �j=1,
j=1; 2; 3; : : : . It is the hydrostatic mode and can be simply considered as a constant of
integration associated with the solution of the governing equations. In the following section
we brie�y discuss the e�ect of time discretization and then focus on the main topic of this
study—propagating modes of the DG scheme.

3. TEMPORAL DISCRETIZATION

Rapidly propagating gravitational disturbances usually carry relatively little energy for many
geophysical �ows when compared to the modes of the large-scale dynamics. However, they
considerably limit the maximum timestep allowed by the CFL stability criterion in formula-
tions that use an explicit time discretization. In an atmospheric context, Robert et al. [31, 32]
demonstrated that much larger timesteps can be used if the linear terms responsible for
the rapidly propagating gravitational oscillations are treated semi-implicitly, via a trapezoidal
Crank–Nicolson scheme. The semi-implicit scheme dramatically reduces the phase speeds of
these fast disturbances without modifying their amplitude, and it has a negligible impact on
the large- and ‘synoptic’-scale dynamics. Hence, the Crank–Nicolson scheme will be of in-
terest for many applications, unless an accurate representation of the fast gravity modes is
important. Further, the use of a purely implicit scheme, although quite stable, is only �rst
order accurate and would thus severely damp the amplitude of the fast gravity waves.
For a given time step �t= tn+1 − tn we introduce a general 2-level time discretization of

(1) and (2) of the form

un+1 + �g�t�n+1
x = un − (1− �)g�t�n

x (8)

�n+1 + �H�tun+1
x = �n − (1− �)H�tun

x (9)

where � is a real parameter such that 06�61. Observe that the standard choices �=0; 12 ; 1
yield the respective forward Euler, trapezoidal Crank–Nicolson and backward Euler type

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:325–347



DISPERSION ANALYSIS OF THE LINEARIZED DG SHALLOW-WATER SYSTEM 329

schemes. Other choices such as Runge Kutta schemes are possible, but they would make
the present stability=dispersion analysis much less tractable.
Equations (8) and (9) are now spatially discretized using the DG method.

4. DISCONTINUOUS GALERKIN FORMULATION

Let ”h denote a partition of the model domain �= (0; L), i.e. ”h is a �nite collection of m
open elements ej, j=1; 2; : : : ; m, of the real line, such that

��=
⋃
ej∈”h

�ej and ei ∩ ej= ∅ for i �= j

Consider a uniform mesh of m intervals on (0; L) and let h=L=m denote the meshlength
parameter with elements ej=(xj; xj+1) for j=1; 2; : : : ; m and nodes xj=( j−1)h for j=1; 2; : : : ;
m + 1. For any given open set $ ($ may de�ne the whole domain �, or an element ej,
j=1; 2; : : : ; m, of ”h), the space H 1($) will denote the usual Sobolev space of functions in
the square-integrable space L2($), whose �rst derivatives belong to L2($). The so-called
(mesh-dependent) broken space H 1(”h) will be de�ned as

H 1(”h)= {v ∈ L2(�); v|e ∈ H 1(e); ∀ e ∈ ”h}
where e simply denotes an element ej, j=1; 2; : : : ; m, of ”h.
Let u and � be su�ciently smooth functions, whose regularity will be examined later.

Multiplying (8) and (9) by functions ’ and  , respectively, belonging to H 1(”h), and inte-
grating over the domain � we obtain: �nd un+1 and �n+1 satisfying the essential boundary
conditions and such that the following holds for each timestep �t:∫

�
un+1’ dx + �g�t

∫
�
�n+1
x ’ dx=

∫
�
un’ dx − (1− �)g�t

∫
�
�n
x’ dx (10)

∫
�
�n+1 dx + �H�t

∫
�
un+1
x  dx=

∫
�
�n dx − (1− �)H�t

∫
�
un
x dx (11)

To obtain the DG formulation we proceed as follows: �rst, decompose the integrals in (10)
and (11) into element contributions and integrate by parts, yielding

m∑
j=1

∫
ej
un+1’ dx − �g�t

m∑
j=1

(∫
ej
�n+1’x dx − �n+1’ |( j+1)−j+

)

=
m∑

j=1

∫
ej
un’ dx + (1− �)g�t

m∑
j=1

(∫
ej
�n’x dx − �n’ |( j+1)−j+

)
(12)

m∑
j=1

∫
ej
�n+1 dx − �H�t

m∑
j=1

(∫
ej
un+1 x dx − un+1 |( j+1)−j+

)

=
m∑

j=1

∫
ej
�n dx + (1− �)H�t

m∑
j=1

(∫
ej
un x dx − un |( j+1)−j+

)
(13)
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j− j+ (j+1)− (j+1)+(j−1)− +(j−1)

Figure 2. Node j corresponds to the coincident node pair ( j−=j+), j=2; 3; : : : ; m.

with j− and j+ being the nodal positions of adjacent elements corresponding to a typical node
j. That is, for interior nodes, j corresponds to the coincident node pair ( j−=j+), j=2; 3; : : : ; m,
as shown in Figure 2.
At time tn (and also at time tn+1 by replacing n by n+ 1) we regroup terms to write

m∑
j=1

�n’ |( j+1)−j+ =
m+1∑
j=1
(�n

j−’j− − �n
j+’j+) (14)

m∑
j=1

un |( j+1)−j+ =
m+1∑
j=1
(un

j− j− − un
j+ j+) (15)

with u= �=0 at nodes 1− and (m+ 1)+.
Next, introduce

〈�j〉�=(1− �)�j− + ��j+ and [�j]= �j− − �j+ (16)

as the weighted averages and jump of �, respectively, at node j for j=1; 2; : : : ; m+ 1.
Using the formula

ab − cd= ((1− �)a+ �c)(b − d) + (a − c)(�b+ (1− �)d) (17)

= (�a+ (1− �)c)(b − d) + (a − c)((1− �)b+ �d) (18)

where a; b; c; d are real numbers and � is a real parameter, equations (14) and (15) can be
conveniently expressed as

m∑
j=1

�n’ |( j+1)−j+ =
m+1∑
j=1
(〈�n

j 〉�[’j] + [�j]〈’n
j 〉1−�) (19)

m∑
j=1

un |( j+1)−j+ =
m+1∑
j=1
(〈un

j 〉�[ j] + [uj]〈 n
j 〉1−�) (20)

where (�; �)= (�; �) or (�; �)= (�; 1− �) or (�; �)= (1− �; �). The case �= 1
2 obviously leads

to the same results.
When u and � belong to H 1(�) ⊂ H 1(”h) the jumps [uj] and [�j] vanish on each ‘knot’

xj, j=1; 2; : : : ; m+ 1, so that (19) and (20) become

m∑
j=1

�n’ |( j+1)−j+ =
m+1∑
j=1

〈�n
j 〉�[’j] (21)

m∑
j=1

un |( j+1)−j+ =
m+1∑
j=1

〈un
j 〉�[ j] (22)
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,u 

j− j+ (j+1)− (j+1)+(j−1)− +(j−1)

, ,u η η ηu 

h

Figure 3. Position of the variables u and � on the grid.

Equations (21) and (22) are then used in (12)–(13) to obtain the desired form of the weak
formulation.
In the DG approximation, we consider �nite element spaces V k

h of polynomial functions,
discontinuous at the element interfaces, such that

V k
h = {vh ∈ L2(�); vh|e= v̂h ◦ F−1

e ; v̂h ∈ Pk(ê); ∀ e ∈ ”h}
where Fe is the a�ne mapping from the master element ê to the element e in the partition,
and Pk(ê) is the space of polynomial functions of degree at most k on ê.
Introducing the �nite-element basis leads to a �nite-element discretization that consists in

�nding uh and �h belonging to V k
h for the selected meshes and bases, such that

m∑
j=1

∫
ej

un+1
h ’ dx − �g�t

m∑
j=1

(∫
ej
�n+1
h ’x dx − 〈�n+1

j 〉�[’j]

)

=
m∑

j=1

∫
ej
un
h’ dx + (1− �)g�t

m∑
j=1

(∫
ej
�n
h’x dx − 〈�n

j 〉�[’j]

)
(23)

m∑
j=1

∫
ej
�n+1
h  dx − �H�t

m∑
j=1

(∫
ej
un+1
h  x dx − 〈un+1

j 〉� [ j]

)

=
m∑

j=1

∫
ej
�n
h dx + (1− �)H�t

m∑
j=1

(∫
ej
un
h x dx − 〈un

j 〉�[ j]

)
(24)

In the present study, the velocity and surface elevation �elds are discretized by using the same
piecewise-linear basis functions and the variables for discontinuous uh and �h are located at
the same nodal positions xj ( j=1; 2; : : : ; m + 1), with h=L=m the nodal spacing, as shown
in Figure 3.
Other possible choices of bases may be considered, for example high-order basis functions,

but those investigated here are of most practical interest. Indeed, as previously mentioned,
unless an accurate representation of the rapidly propagating gravitational oscillations is desired,
a Crank–Nicolson time stepping scheme may be e�ciently used to treat the linear terms
responsible for their propagation. Consequently, the phase speed of these fast waves (not
their amplitude) is greatly retarded by the semi-implicit scheme and a high-order spatial
discretization of the terms that govern their propagation is therefore not warranted. This is
true for many applications where the rapid gravitational oscillations carry negligible energy.
In the next section we present the main analytical results of the present work concerning
propagating spurious modes.
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5. STABILITY=DISPERSION ANALYSIS

A stability=dispersion analysis is now constructed for the DG schemes based on three di�erent
choices for representing the �uxes at the element interfaces.

5.1. The case �= �= � (DG1)

Equation (23) at node j+ for ’=’j+ becomes∫
ej
(un+1

j+ ’j+ + un+1
( j+1)−’( j+1)−)’j+dx − �g�t

∫
ej
(�n+1

j+ ’j+ + �n+1
( j+1)−’( j+1)−)(’j+)x dx

+�g�t(〈�n+1
j 〉�[’j] + 〈�n+1

j+1〉�[’( j+1)])

=
∫
ej
(un

j+’j+ + un
( j+1)−’( j+1)−)’j+ dx + (1− �)g�t

∫
ej
(�n

j+’j+ + �n
( j+1)−’( j+1)−)(’j+)x dx

−(1− �)g�t(〈�n
j 〉�[’j] + 〈�n

j+1〉�[’( j+1)]) (25)

where uh and �h have been expanded over element ej, at times tn+1 and tn, in terms of their
nodal values for the element, using the basis functions ’j+ and ’( j+1)− . Since the latter are
linear over element ej, we have ’j+ = (x − xj+1)=(xj − xj+1) and ’( j+1)− =(x − xj)=(xj+1 − xj).
We then deduce [’j]=’j− − ’j+ = − 1 and [’( j+1)]=0 at node j+, (’j+)x= − 1=h, and∫

ej
’j+’j+ dx=

h
3
;
∫
ej
’j+’( j+1)− dx=

h
6
;
∫
ej
’j+ dx=

∫
ej
’( j+1)− dx=

h
2

By using (16) we �nally obtain

h
3
un+1
j+ +

h
6
un+1
( j+1)− +

�
2
g�t(2(� − 1)�n+1

j− + (1− 2�)�n+1
j+ + �n+1

( j+1)−)

=
h
3
un
j+ +

h
6
un
( j+1)− − (1− �)

2
g�t(2(� − 1)�n

j− + (1− 2�)�n
j+ + �n

( j+1)−) (26)

Equation (23) at node ( j + 1)− for ’=’( j+1)− , and following the same procedure, leads to

h
6
un+1
j+ +

h
3
un+1
( j+1)− +

�
2
g�t(−�n+1

j+ + (1− 2�)�n+1
( j+1)− + 2��

n+1
( j+1)+)

=
h
6
un
j+ +

h
3
un
( j+1)− − (1− �)

2
g�t(−�n

j+ + (1− 2�)�n
( j+1)− + 2��

n
( j+1)+) (27)

Similarly, for (24) with  =  j+ and  =  ( j+1)− respectively

h
3
�n+1
j+ +

h
6
�n+1
( j+1)− +

�
2
H�t(2(� − 1)un+1

j− + (1− 2�)un+1
j+ + un+1

( j+1)−)

=
h
3
�n
j+ +

h
6
�n
( j+1)− − (1− �)

2
H�t(2(� − 1)un

j− + (1− 2�)un
j+ + un

( j+1)−) (28)
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h
6
�n+1
j+ +

h
3
�n+1
( j+1)− +

�
2
H�t(−un+1

j+ + (1− 2�)un+1
( j+1)− + 2�u

n+1
( j+1)+)

=
h
6
�n
j+ +

h
3
�n
( j+1)− − (1− �)

2
H�t(−un

j+ + (1− 2�)un
( j+1)− + 2�u

n
( j+1)+) (29)

Periodic solutions of discrete system (26)–(29) corresponding to uj± = ũ±ei(kxj±+!t) and
�j± =�̃±e

i(kxj±+!t) are sought. Substituting in (26)–(29) and setting

E=ei!�t ; �=
h
6
(E − 1); 	=

�t
2
([E − 1]�+ 1) (30)

to simplify the resulting relations, we obtain


2� �eikh g	(1− 2�) g	(eikh − 2 + 2�)
�e−ikh 2� g	(2� − e−ikh) g	(1− 2�)

H	(1− 2�) H	(eikh − 2 + 2�) 2� �eikh

H	(2� − e−ikh) H	(1− 2�) �e−ikh 2�


X= 0 (31)

where Xt = (ũ+; ũ−; �̃+; �̃−) and 0
t = (0; 0; 0; 0).

For a non-trivial solution X to exist, the determinant of the matrix in the left hand side of
(31) must vanish. This condition implies

9�4 + 4gH�2	2A+ 4g2H 2	4B=0 (32)

with

A=−1 + 18� − 18�2 + e−ikh(7[2� − 1] + � − 8�2) + eikh(� − 8�2)
+e−2ikh(2� − 1− �2) + e2ikh(−�2) (33)

B=1+ 2� − 2�2 + e−ikh(2[2� − 1]− 2�) + eikh(−2�)

+e−2ikh(1− 2�+ �2) + e2ikh(�2) (34)

Solving (32) for �2 and using (30) we obtain the following pair of solutions for E:

E±
j =

1± (1− �)c(rRj + ir
I
j)

1∓ �c(rRj + irIj)
; j=1; 2 (35)

where c≡√
gH�t=h is the gravitational Courant number and

rj=
√

−2A ± 2
√

A2 − 9B≡ rRj + ir
I
j ; j=1; 2 (36)

where rRj and rIj are respectively the real and imaginary parts of rj, j=1; 2.
In the limit as in�nitesimal time step �t → 0 and for all �, the discrete frequencies obtained

from (35) asymptote to the complex expressions

!j=±
√
gH
h

(rIj − irRj ); j=1; 2 (37)
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and for in�nitesimal mesh spacing we obtain

!1 =




±
√

gH sgn
(
� − 1

2

)(
−i 6(2� − 1)

h
+ 3k + i(2� − 1)k2h − 1

3
k3h2 +O(h3)

)

if � �= 1
2
;

±
√

gH
(
k +

1
48

k3h2 +O(h4)
)

if �=
1
2

(38)

!2 =




±
√

gH
(
k + i

1
72(2� − 1) k

4h3 +O(h4)
)

if � �= 1
2

±
√

gH
(
3k − 5

16
k3h2 +O(h4)

)
if �=

1
2

(39)

Note that !1 in (38) and !2 in (39) coincide with the continuous solution obtained from (3) in
the limit as mesh spacing h→ 0 only when �= 1

2 in (38) and � �= 1
2 in (39), respectively. For

� �= 1
2 in (38) and �= 1

2 in (39), !1 and !2, respectively, correspond to spurious propagating
modes from the DG scheme.
Equation (35) leads to

|E±
j |=

√
(1± [1− �]crRj )

2 + ([1− �]crIj)
2

(1∓ �crRj )2 + (�crIj)2
j=1; 2 (40)

A necessary and su�cient condition for stability is then obtained from (40)

|E±
j |61⇐⇒ c(2� − 1)((rRj )2 + (rIj)2)¿± 2rRj ; j=1; 2 (41)

In the present instance the results are compared with those of the CG case, which is denoted
by |E∗|, with

|E∗|=
√
1 + (1− �)2c2r2∗
1 + �2c2r2∗

where r∗=
3 sin kh
2 + cos kh

(42)

The values of |E±
j |, j=1; 2, are plotted in Figure 4 as a function of c and kh for �= 1

2 and
�=1, in the cases �=0 and 1

4 , and in Figure 5 for �=1 in the case �= 1
2 . In the following

numerical results (e.g. see Figure 4) we test for �=0; 14 ;
1
2 . Note that Ej(�)=Ej(1 − �), so

the results are symmetric with respect to choice of � in this sense. That is, Ej( 14 )=Ej( 34 ).
Returning to Figure 4, |E+1 | tends to in�nity for k=0 and c= 1

3 and
2
3 in the case �= 1

2 with
�=0 and 1

4 , respectively, and c= 1
6 and

1
3 in the case �=1 with �=0 and 1

4 , respectively.
This behaviour is presumably due to the term −i6(2� − 1)=h in (38) for � �= 1

2 , a source of
potential instability. In fact, the present scheme will become unstable as soon as � �= 1

2 . The
term −i6(2� − 1)=h in (38) is also responsible for the strange behaviour of |E−

1 | in Figure 4
for k=0, since |E−

1 | �= 1 except when c=0, and |E−
1 |=0 for c= 1

3 (case �=0) and c= 2
3

(case �= 1
4). It is also observed, in Figure 4, that for �= 1

2 |E+2 | is greater than 1 for some
values of kh.
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Figure 4. |E±
j |, j=1; 2, in the cases �= 1

2 and 1, with �=0 and 1
4 . The lines 1; 2; 3

and 4 correspond to |E+1 |; |E−
1 |; |E+2 | and |E−

2 |, respectively.

Some damping of the solution occurs in the case �=1, as shown in Figure 4 (except
for |E+1 |). Similar damping occurs for �= 1

2 , as seen in Figure 5, and it is compared with
the damping in the CG scheme. The results obtained for �= 1

2 in Figure 4 are somewhat
surprising since some damping is observed for |E−

1 | and |E−
2 |. However, from (41) and for

�= 1
2 , we deduce the scheme is neutrally stable (|E±

j |=1) only if rRj =0, j=1; 2, contrary
to the CG case. It is observed graphically that rRj =0, j=1; 2, when �= 1

2 only. This parti-
cular choice of � leads to real expressions for A and B in (33) and (34), respectively, with
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Figure 5. |E±
j |, j=1; 2, and |E∗| in the case �=1 with �= 1

2 .

−2A± 2√A2 − 9B¡0, and hence to rRj =0 and rIj =
√
2A∓2√A2 − 9B, j=1; 2, or

rIj =2
∣∣∣∣sin kh

2

∣∣∣∣
√
4 + cos kh±

√
(4 + cos kh)2 − 9 (43)

with 164 + cos kh −
√
(4 + cos kh)2 − 963 for all kh. Hence, for �= 1

2 , |E±
j |=1, j=1; 2,

only if �= 1
2 . Note that the damping of |E−

1 | and |E−
2 | for �= 1

2 in Figure 4, has previously
been observed when the analogous least-squares scheme is used [33]. Furthermore, as for the
CG scheme, the present method is only conditionally stable when �=0.
Finally, for kh=� (and c �= 0) we have |E±

j | �= 1, j=1; 2, while |E∗|=1 as shown in
Figure 5. As for the �nite-di�erence case examined in Section 2, the solution of the CG
scheme exhibits a spurious elevation mode when kh=�, corresponding to stationary waves
of length 2h. It is quite interesting and important to note that such a spurious mode is not
present in the discretization of the shallow-water equations using the DG method when the
same linear approximation is used for both velocity and surface elevation �elds.

5.2. The case �= � and �=1− � (DG2)

Equation (23) for ’=’j+ and ’( j+1)− , respectively, still implies the pair of Equations (26)
and (27), since �= �. However, for (24) with  =  j+ and  ( j+1)− the choice �=1− � leads,
respectively, to

h
3
�n+1
j+ +

h
6
�n+1
( j+1)− +

�
2
H�t(−2�un+1

j− + (2� − 1)un+1
j+ + un+1

( j+1)−)

=
h
3
�n
j+ +

h
6
�n
( j+1)− − (1− �)

2
H�t(−2�un

j− + (2� − 1)un
j+ + un

( j+1)−) (44)

h
6
�n+1
j+ +

h
3
�n+1
( j+1)− +

�
2
H�t(−un+1

j+ + (2� − 1)un+1
( j+1)− + 2(1− �)un+1

( j+1)+)

=
h
6
�n
j+ +

h
3
�n
( j+1)− − (1− �)

2
H�t(−un

j+ + (2� − 1)un
( j+1)− + 2(1− �)un

( j+1)+) (45)
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Periodic solutions of discrete system (26)–(27) and (44)–(45) corresponding to
uj± = ũ±ei(kxj±+!t) and �j± = �̃±e

i(kxj±+!t) are again sought. Substituting in (26)–(27) and
(44)–(45), we obtain




2� �eikh g	(1− 2�) g	(eikh − 2 + 2�)
�e−ikh 2� g	(2� − e−ikh) g	(1− 2�)

H	(2� − 1) H	(eikh − 2�) 2� �eikh

H	(2− 2� − e−ikh) H	(2� − 1) �e−ikh 2�


X= 0 (46)

where Xt = (ũ+; ũ−; �̃+; �̃−) and 0
t = (0; 0; 0; 0).

For a non-trivial solution X to exist, the determinant condition now implies

9�4 + 4gH�2	2C + 8g2H 2	4D=0 (47)

with

C =8− 16�+ 16�2 + (1− 16�+ 16�2) cos kh+ 4�(� − 1) cos2 kh (48)

D=1− 2�+ 2�2 − cos kh+ 2�(1− �) cos2 kh (49)

Solving (47) for �2 and using (30) we obtain the following pair of solutions for E:

Ej=
1± i(1− �)crj
1∓ i�crj ; j=3; 4 (50)

where

rj=
√
2C ∓ 2

√
C2 − 18D; j=3; 4 (51)

with 2C∓2√C2 − 18D¿0 for all � and kh.
In the limit as in�nitesimal time step �t → 0 and for all �, the discrete frequencies obtained

from (50) asymptote to the real expressions

!j=±
√
gH
h

rj; j=3; 4 (52)

and for in�nitesimal mesh spacing we obtain

!3 =




±
√

gH sgn
(
� − 1

2

)(
6(2� − 1)

h
− 16�2 − 16�+ 1

4(2� − 1) k2h+O(h3)
)

if � �= 1
2

±
√

gH
(
3k − 5

16
k3h2 +O(h4)

)
if �=

1
2

(53)
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Figure 6. |Ej|, j=3; 4, in the case �=1 with �=0; 14 and
1
2 .

!4 =




±
√

gH
(
k − 24�2 − 24�+ 1

1080(4�2 − 4�+ 1) k
5h4 +O(h6)

)
if � �= 1

2

±
√

gH
(
k +

1
48

k3h2 +O(h4)
)

if �=
1
2

(54)

Note that only !4 coincides with the continuous solution obtained from (3) in the limit as
mesh spacing h→ 0, while !3 corresponds to a spurious propagating mode from the DG
scheme.
Equation (50) leads to

|Ej|=
√
1 + ([1− �]crj)2

1 + (�crj)2
; j=3; 4 (55)

A necessary and su�cient condition for stability is that |Ej|61, j=3; 4. For �=0 the present
method is only conditionally stable, and for �= 1

2 it is neutrally stable (|Ej|=1 for j=3; 4)
as for the CG case. Finally, for �=1 the scheme is stable but the modes corresponding to
(50) are damped as shown in Figure 6. The surprising behaviour of |E4| for k=0 in the cases
�=0 and 1

4 is due to the presence of the term 6(2� − 1)=h in (53) when � �= 1
2 . Indeed, this

term is independent of k and it leads to !3 �= 0, and hence |E4| �= 1, for k=0.
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5.3. The Riemann problem approach (DG3)

We now assume that the averages 〈:〉� and 〈:〉� in (23) and (24) are chosen through the solution
of the Riemann problem (see Reference [34, Section 4.5.2]) for system (1)–(2) written in
the matrix form

wt + Awx= 0 with A=

(
0 H

g 0

)
and w=(�; u) (56)

Two waves are associated with the characteristic speeds −√
gH and

√
gH , the eigenvalues

of matrix A, and the corresponding characteristic curves are de�ned by x +
√
gHt=0 and

x − √
gHt=0, respectively. The two waves separate the x − t domain into three regions. In

the region of interest, usually called the star region which lies between the two characteristic
curves, the solutions of the Riemann problem for � and u involve arithmetic means and jumps
of their initial data (see Reference [34, Section 4.5.2]).
We use the solutions for � and u in the star region to compute the �uxes at the cell

interfaces. Hence, at time tn, the weighted averages in (23) and (24) become

〈�n
j 〉� =

1
2
(�n

j− + �n
j+) +

1
2

√
H
g
(un

j− − un
j+) (57)

〈un
j 〉� =

1
2
(un

j− + un
j+) +

1
2

√
g
H
(�n

j− − �n
j+) (58)

Note in (57) and (58), 〈:〉� and 〈:〉� are now independent of � and �. The �rst term in the right
hand sides of (57) and (58) is the arithmetic mean, corresponding to the choice �= �= 1

2 in
(23) and (24), while the second term, the jump, may be considered as an upwind term.
By following the same procedure as in Section 5.1, Equation (23) for ’=’j+ and

’=’( j+1)− respectively, implies the pair of equations

h
3
un+1
j+ +

h
6
un+1
( j+1)− +

�
2
g�t

(
−�n+1

j− + �n+1
( j+1)− −

√
H
g
(un+1

j− − un+1
j+ )

)

=
h
3
un
j+ +

h
6
un
( j+1)− − (1− �)

2
g�t

(
−�n

j− + �n
( j+1)− −

√
H
g
(un

j− − un
j+)

)
(59)

h
6
un+1
j+ +

h
3
un+1
( j+1)− +

�
2
g�t

(
−�n+1

j+ + �n+1
( j+1)+ +

√
H
g
(un+1
( j+1)− − un+1

( j+1)+)

)

=
h
6
un
j+ +

h
3
un
( j+1)− − (1− �)

2
g�t

(
−�n

j+ + �n
( j+1)+ +

√
H
g
(un
( j+1)− − un

( j+1)+)

)

(60)
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Similarly, for (24) with  =  j+ and  =  ( j+1)− , respectively, we obtain

h
3
�n+1
j+ +

h
6
�n+1
( j+1)− +

�
2
H�t

(
−un+1

j− + un+1
( j+1)− −

√
g
H
(�n+1

j− − �n+1
j+ )

)

=
h
3
�n
j+ +

h
6
�n
( j+1)− − (1− �)

2
H�t

(
−un

j− + un
( j+1)− −

√
g
H
(�n

j− − �n
j+)
)

(61)

h
6
�n+1
j+ +

h
3
�n+1
( j+1)− +

�
2
H�t

(
−un+1

j+ + un+1
( j+1)+ +

√
g
H
(�n+1
( j+1)− − �n+1

( j+1)+)
)

=
h
6
�n
j+ +

h
3
�n
( j+1)− − (1− �)

2
H�t

(
−un

j+ + un
( j+1)+ +

√
g
H
(�n
( j+1)− − �n

( j+1)+)
)
(62)

Periodic solutions are again substituted in the discrete system (59)–(62) and this leads to


2�+
√

gH	 �eikh −
√

gH	 0 g	(eikh − 1)
�e−ikh −

√
gH	 2�+

√
gH	 g	(1− e−ikh) 0

0 H	(eikh − 1) 2�+
√

gH	 �eikh −
√

gH	

H	(1− e−ikh) 0 �e−ikh −
√

gH	 2�+
√

gH	



X= 0 (63)

where Xt = (ũ+; ũ−; �̃+; �̃−) and 0
t = (0; 0; 0; 0).

For a non-trivial solution X to exist, the determinant condition implies

9
4 + 12(cos kh+ 2)
3	+ 4(cos kh+ 8)
2	2 − 8(cos kh − 1)
	3 + 8(1− cos kh)	4 = 0 (64)
where 
= �=

√
gH . After some long and tedious algebra (64) is rewritten as

(3
2 + 2(eikh + 2)
	 − 2(eikh − 1)	2)
×(3
2 + 2(e−ikh + 2)
	 − 2(e−ikh − 1)	2)=0 (65)

Solving (65) for �2 and using (30) we obtain the following pair of solutions for E

E±
j =

1+ (1− �)cr±
j

1− �cr±
j

; j=5; 6 (66)

where

r±
5 =−(eikh + 2)±

√
(eikh + 2)2 + 6(eikh − 1)≡ rR±

5 + irI±5 (67)

r±
6 =−(e−ikh + 2)±

√
(e−ikh + 2)2 + 6(e−ikh − 1)≡ rR±

6 + irI±6 (68)

with rR±
j and rI±j being, respectively, the real and imaginary parts of r±

j , j=5; 6, with
rR±
6 = rR±

5 and rI±6 = − rI±5 .
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In the limit as in�nitesimal time step �t → 0 and for all �, the discrete frequencies obtained
from (66) asymptote to the complex expressions

!±
j =

√
gH
h

(rI±j − irR±
j ); j=5; 6 (69)

and for in�nitesimal mesh spacing we obtain

!+5 =
√

gH
(
k +

i
72

k4h3 +O(h4)
)

(70)

!−
5 =

√
gH
(
6i
h

− 3k − ik2h+ 1
3
k3h2 +

5i
72

k4h3 +O(h4)
)

(71)

!+6 =
√

gH
(

−k +
i
72

k4h3 +O(h4)
)

(72)

!−
6 =

√
gH
(
6i
h
+ 3k − ik2h − 1

3
k3h2 +

5i
72

k4h3 +O(h4)
)

(73)

Note that !+5 and !+6 in (70) and (72), respectively, coincide with the continuous solution
obtained from (3) in the limit as mesh spacing h→ 0, while !−

5 and !−
6 in (71) and (73),

respectively, correspond to spurious propagating modes from the DG scheme.
Equation (66) leads to

|E±
j |=

√√√√ (1 + [1− �]crR±
j )2 + ([1− �]crI±j )

2

(1− �crR±
j )2 + (�crI±j )2

j=5; 6 (74)

A necessary and su�cient condition for stability is then obtained from (74):

|E±
j |61⇐⇒ c(2� − 1)((rR±

j )2 + (rI±j )
2)¿2rR±

j ; j=5; 6 (75)

Some calculations show that rR±
j 60, j=5; 6, for all kh. Hence, at least for �¿ 1

2 the scheme
is unconditionally stable. For �= 1

2 , the scheme is neutrally stable if rR±
j =0, and this only

happens for kh=0(2�) in r+j , j=5; 6. Note the term 6i=h in (71) and (73) implies |E−
5 | �= 1

and |E−
6 | �= 1 for kh=0 in both cases �= 1

2 and 1. In conclusion, when the scheme is stable
the modes corresponding to (66) are always damped, as shown in Figure 7.

6. NUMERICAL RESULTS

In the previous section, it has been observed that in the respective DG schemes, the spurious
frequencies !1 and !2 in (38) for � �= 1

2 and (39) for �= 1
2 , respectively, !3 in (53), and

!−
5 and !−

6 in (71) and (73), respectively, do not agree with the continuous solution as mesh
spacing h→ 0. In order to evaluate the impact of the spurious modes on the quality of the
numerical solution a simulation test is performed. We examine the propagation and dispersion
of gravity waves in a one-dimensional enclosed domain of length L=10000 km. Equations
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Figure 7. |E±
j |; j = 5; 6, in the cases �= 1

2 and 1.

(1) and (2) are solved with parameters g and H set to result in a phase speed for gravity
waves of

√
gH =100 m s−1. A Gaussian distribution, centered at x0, is prescribed at initial

time and the initial velocity �eld is taken to be zero, i.e.

�(x; 0) = e−
( x−x0

�

)2
(76)

u(x; 0) = 0 (77)

with x0 = 5000 km. The distance h between two velocity nodes is taken to be 10 km, and the
parameter � is chosen to be 50 km so that the e-folding radius of the initial Gaussian (the
distance x from x0 for which �(x; 0)= e−1) is resolved by 5 nodes.
In the �rst simulation, the time step is chosen to be 0:1s, and thus the gravitational Courant

number is Cg=
√
gH�t=h=10−3. With such a small value for Cg, the numerical solution

should be expected to approximate the analytical one reasonably well. Furthermore, the use of
a forward Euler (�=0) and a Crank–Nicolson (�= 1

2) time stepping schemes yield essentially
the same results. The evolution of the surface elevation is shown in Figure 8 after 15 000 s of
simulation for the DG scheme and the results are compared with those of the CG case. Note
only half of the domain is shown since all the numerical results presented in this section are
symmetric with respect to x0 = 5000 km.
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0 500 km 3500 5000
(a)

0 500 km 3500 5000
(b)

0 500 km 3500 5000
(c)

0 500 km 3500 5000
(d)

Figure 8. The surface-elevation after 15 000 s of propagation with �t=0:1 s in the
explicit case (�=0) for the CG and DG schemes: (a) CG, DG3; (b) DG1 and DG2

with �= 1
2 , (c) DG2 with �=0; and (d) DG2 with �= 1

4 .

The initial Gaussian has an amplitude equal to 1. Shortly after the beginning of the sim-
ulation the Gaussian is split into two Gaussians, each having an amplitude equal to 0.5
and travelling with an opposite phase speed of ±√

gH . In Figure 8, the DG scheme repro-
duces quite well such behaviour, as does the CG scheme. However, we also notice for the
DG1 and DG2 schemes, the presence and the propagation of spurious solutions identi�ed in
Section 5. Indeed, (39) and (53), corresponding to the DG1 or DG2 scheme for �= 1

2 , yield
numerical modes having phase speeds ± 3√gH . In Figure 8(b), as the Gaussian propagates
over 1500 km, the spurious DG solution propagates exactly and precisely over 4500 km. The
spurious modes corresponding to the DG2 scheme for �=0 and 1

4 are evident in Figures 8(c)
and (d), respectively. Finally, the DG3 solution coincide with the CG solution. Note that the
amplitude of the spurious modes, when they exist, is enhanced by employing a longer time
step and reduced by using a smaller one.
In the second simulation the backward Euler scheme is employed (�=0) which allows

the use of larger times steps. For �t=1s, the DG2 results with �=0 and 1
4 now coincide
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0 500 km 3500 5000 0 500 km 3500 5000

(a) (b)

Figure 9. The surface-elevation after 15 000s of propagation in the implicit case (�=1) for the CG and
DG schemes: (a) CG, DG2, for �=0; 14 and �t=1 s; and (b) DG1, DG2, for �= 1

2 and �t=5 s.

0 500 km 3500 5000

(a)

0 500 km 3500 5000

(b)

Figure 10. The surface-elevation after 12 h of propagation with �t=20 s in the Crank–Nicolson
case (�= 1

2) for the CG and DG3 schemes: (a) CG; and (b) DG3.

with the CG solution, as shown in Figure 9(a), implying the spurious modes (but also the
solution) have been damped. The DG3 result (not shown) presents a similar behaviour, but
the damping of the Gaussian is slightly more pronounced. However, when �= 1

2 , the spurious
mode corresponding to the DG1 or DG2 schemes is still visible in Figure 9(b), in spite of
using a much longer time step (�t=5 s) which contributes to severely damp the Gaussian.
The last simulation is performed up to 12 h using the Crank–Nicolson scheme (�= 1

2) and
the time step is chosen to be 20 s. As shown in Figure 10 the DG3 solution is noticeably
damped compared to the Galerkin one. This result illustrates the stability/dispersion plots
obtained in Figure 7.
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7. CONCLUDING REMARKS

This appears to be the �rst study of the dispersion relation and spurious mode behavior
for �nite-element solutions of the 1-D linearized shallow-water equations based on the DG
approach. There are a number of variants of DG methods that have been proposed recently
in the literature in both the shallow-water context and also for other applications classes.
Indeed, the idea of using discontinuous approximations across element boundaries with weak
enforcement of continuity conditions is hardly new. This approach has not been popular largely
because of questions concerning the increased number of degrees of freedom and consequent
implications concerning e�ciency. Nevertheless, the approach merits study and since local
conservation or other special properties such as adaptive meshing can be easily enforced, the
schemes are of interest.
Here we construct the dispersion relation of some basic DG mixed schemes using piecewise-

linear basis functions, with the respective velocity and elevation variables located at the same
nodal positions. We study the folding behaviour for spurious modes as well as the phase
behaviour and dissipative e�ects. The behaviour is compared analytically and graphically
with that of the CG mixed formulation to illustrate the main points of interest. These results
can also be compared with those in Reference [33] for the least squares mixed formulation
which is more dissipative. A numerical test case, concerning the propagation of gravity waves,
illustrates the theoretical results obtained for the spurious solutions of the DG scheme, and in
particular their phase speeds. A spurious propagating mode traveling at three times the gravity
mode is seen (Figure 8(b)).
It is important to note that spurious stationary surface-elevation modes have not been found

in the DG schemes examined here, contrary to the corresponding CG case. However, spurious
propagating modes have been identi�ed in all the present DG formulations. The origin of these
modes is linked with the increased number of the discrete variables compared to the CG
scheme (twice in 1-D), leading to additional discrete frequencies which are usually spurious.
The nature of those propagating modes has not been investigated here, but it strongly depends
on the �ux formulation at the element interfaces and the temporal scheme. This is why time-
integration methods other than those examined here should be investigated in future works.
We close by noting that there are many ways to express DG formulations including adding

least squares terms as interface penalties and a dispersion analysis of such schemes should be
carried out numerically before they are implemented or advocated for applications. Likewise
the e�ects of additional terms such as Coriolis that are not included in the present construction
should be studied (see Reference [33] for related studies). An explicit algebraic construction of
the form used here will be prohibitive in higher dimensions or with more complex equations
but symbolic manipulation or a numerical eigen-analysis treatment is then still possible.
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